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ABSTRACT

Large-scale websites are predominantly built as a service-oriented
architecture. Here, services are specialized for a certain task, run
on multiple machines, and communicate with each other to serve
a user’s request. Reducing latency and improving the cost to serve
is quite important, but optimizing this service call graph is par-
ticularly challenging due to the volume of data and the graph’s
non-uniform and dynamic nature.

In this paper, we present a framework to detect hotspots in a
service-oriented architecture. The framework is general, in that it
can handle arbitrary objective functions. We show that finding the
optimal set of hotspots for a metric, such as latency, is NP-complete
and propose a greedy algorithm by relaxing some constraints. We
use a pattern mining algorithm to rank hotspots based on the im-
pact and consistency. Experiments on real world service call graphs
from LinkedIn, the largest online professional social network, show
that our algorithm consistently outperforms baseline methods.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Modeling Techniques; 1.2.6 [Artificial Intelligence]:
Learning; D.2.8 [Software Engineering]: Process Metrics

Keywords: call graph; monitoring; service-oriented architecture;
hotspots

1. INTRODUCTION

Modern web architectures consist of a collection of services,
which are a set of software components spread across multiple ma-
chines that respond to requests and map to a specific task. A service
is an atomic unit of functionality. This permits easy abstraction and
modularity, as well as independent scaling of components.

An incoming user request is load balanced to a front-end service,
which fans out requests in parallel to other services to collect and
process the data necessary to respond to the incoming request. The
callee service of this request can also call other services, creating
a call graph (service call graph or SCG) of requests. For example,
LinkedIn, one of the largest online social networks, has a recom-
mendation feature called “People You May Know” that attempts
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to find other members to connect with on the site. To show this
module, several services are called: a web server wrapped as a
service to receive and parse the member’s request, a recommenda-
tion service that receives the member id from the web server and
retrieves recommendations, and finally a profile service to collect
metadata about the recommended members for decorating the web
page shown to users.

Modern websites consist of dozens and often hundreds of ser-
vices to encompass a breadth of functionality. LinkedIn, one of
the largest online social networks, runs hundreds of services on
thousands of machines in multiple data centers all over the world.

Engineering and operations teams are continually optimizing
these services and the call graph to decrease latency, improve
throughput, and reduce the cost to serve. However, with such a large
and dynamically changing workload, it is difficult and time consum-
ing to determine these hotspots in the call graph. Each page served
usually touches dozens of services and machines, and is usually de-
pendent on a particular member’s attributes. For example, most con-
tent on a page is a function of the member’s number of connections
in the social graph. In addition, at any given moment, there is contin-
ual code deployment and A/B split testing, which further causes call
graph changes. As a result, the call graphs vary for the same page.

In a service-oriented world, each service can call several other
services before returning to its caller with the appropriate response.
On one extreme, these subcalls can be made sequentially meaning
that a service is called only after the previous one completed or is
called in parallel, meaning that the services are called at the same
instant or in a brief time span. Further the subsequent calls can be
called either serially or in parallel. The service itself can also spend
time performing internal computations. Understanding where a
service spends most of its time is important in detecting hotspots to
optimize the call graph. The latencies and the order of service calls
vary widely across different requests, making it difficult to create a
reasonable model to fit historical data.

In this work, we present a novel unsupervised algorithm that
determines hotspots in a service-oriented architecture. It combines
historical and latest service metrics data to rank hotspots in the call
graph. This ranked list provides a simple vehicle to target which
services to optimize. The algorithm works in two stages. In the
first stage, the hotspot services are computed for each call graph by
analyzing the impact each downstream service has on the request.
In the second stage, the hotspots across call graphs are aggregated
to find the best hotspots.

The contribution of this work is a new approach for detecting
hotspots in a service-oriented architecture with respect to various
objective functions. In particular, we show how it can be used to
find services that will improve the latency of a functionality and
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Figure 1. A generic website architecture consisting of multiple
tiers of services

reduce the cost of serving a request. The algorithm can be used to
analyze both the historical call graph data and real-time call graphs.

We evaluate our approach on millions of call graphs generated
at LinkedIn. Our results show that our method consistently outper-
forms other baseline methods.

The rest of the paper is organized as follows. Section 2 provides
background on service-oriented architectures and Section 3 show-
cases related work. Section 4 introduces notation used in this paper.
We first show how to optimize latency in Section 6, followed by the
cost to serve in Section 7, and then any arbitrary metric in Section 8.
We evaluate our algorithm against current techniques in Section 9
and finally conclude in Section 10.

2. BACKGROUND

Websites are composed of multiple services that can be classified
into 3 tiers: the front-end, middle, and data tier, with each service
in their tiers exposing APIs for communication. Figure 1 presents
the high-level architecture of LinkedIn. The front-end tier, consists
of services catered to serving user requests by multiplexing them
to the correct service in the application tier. There is generally a
one-to-one mapping between user-facing functionality and a front-
end service. For example, the search front-end service would only
cater to requests coming from search pages. The application tier
services communicate amongst themselves, and then finally call
the data tier to retrieve data from databases.

Each service implements a common interface that generates
common metrics such as latency, error count, etc. and sends them
to a centralized metric collection system. Because these systems
are running on various machines, every user request produces a
random trace id that is injected at the front-end service, and then
passed along by downstream services for the metric collection
system to construct a call graph.

LinkedIn runs hundreds of services deployed on thousands of
machines in multiple data centers. At any given time there are mul-
tiple versions of the site being shown to users with frequent code
changes and deployments. As new features are added regularly, new
services get added to all 3 tiers of the architecture, making the call
graph complicated and error prone. Because services communicate
with each other via pre-defined APIs, no single engineer has the
complete domain knowledge of all APIs and their corresponding
dependencies.

Hence, in this complicated call-graph it becomes very important
to automatically detect hotspots with minimal human effort. The
algorithm for detecting these hotspots should be domain agnostic
and should cater to complicated call graphs that could potentially
be affected by external factors such as call timeouts, hardware
maintenance, or service hardware co-location.

3. RELATED WORK

Most of the existing work on diagnosing large-scale service-
oriented architectures are aimed at modeling workflows [7, 17, 18,
21, 22] and latency [16, 19]. Mann et al. [16] compared the perfor-
mance of several models in estimating service latency as a function
of the calling RPCs latencies. Ostrowski et al. [19] developed a
probabilistic model for end-to-end modeling of the root service’s
latency. This modeling enables the user to ask “what if”” questions
to understand the impact of changing a downstream service on the
root service. Though these models work well in estimating impact,
they cannot suggest the actual services to optimize. Further, most
of these models are tailored for optimizing just one metric: latency;
the generalized framework we present in this paper recommends
the hotspot services with respect to various metrics.

Estimating link bandwidth bottlenecks in a network is a well-
studied problem in the field of network monitoring: tools that
detect the bottlenecks are widely used by network operators for
effective utilization of network resources. Hu et al. [13] developed
“Pathneck”, a tool to detect bottlenecks along network paths by es-
timating the bandwidth of the links that make up that path. It uses
a probing technique where the source sends a sequence of UDP
packets containing load and measurement packets, called recursive
packet train (RPT), along the paths that the user wants to analyze.
At each node on the path, two ICMP packets are sent back to the
source; bandwidth is estimated using the time gap between receipt
of the two packets. Choke points along a path are defined as the
links where the bandwidth is less than what is available on the path
from the source to that link, and where the bottleneck node is the
last choke point along the path. Hu et al. [14] also analyzed various
properties of the bottlenecks like persistence and packet loss.

The tool developed by Harfoush et al. [12] analyzes how the
packet train messages are handled and can detect bottlenecks in
arbitrary subpaths. Other tools for detecting bottlenecks include
“BFind” developed by Akella et al. [1] and the packet tailgating
method by Ribeiro et al. [20]. Recently, there have been algo-
rithms [10, 24] developed for bottleneck detection in sensor net-
works that face new challenges compared to traditional networks.

Betweenness centrality, primarily used in the context of social
and transportation networks is a measure of the importance of a
node. A node or edge with high betweenness value is part of many
shortest paths between nodes in the network [4, 8]. These nodes and
edges can be interpreted as bottlenecks in the network. Cuzzocrea
et al. [5] uses the betweenness idea for controlling the topology
in wireless sensor networks: given a set of nodes and quality of
services (QoS) requirements, their algorithm suggests a topology
that satisfies the requirements with minimum energy utilization.

For several reasons, detecting hotspots in SCG poses several
unique challenges that make it infeasible to use any of the network
monitoring approaches previously described.

Controlling metric. Most of the bottleneck detection algorithms
construct packets to analyze the bandwidth. They have fine grained
control over the length of the packet and the nodes involved. How-
ever, this is not possible in the case of SCG as metrics such as
latency cannot be changed arbitrarily while keeping other factors
constant.
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Figure 2. Example of an SCG. For each node, [id], name of the
services (anonymized), and the [start, end] time of the service call
that initiated the service is shown.

Network structure. Network monitoring tools usually analyze
a fixed large network. In our case, the network is a SCG that is
relatively small and has a variable structure for the same system
functionality.

Parallel service calls. Parallel service calls introduce a new chal-
lenge that the traditional algorithms don’t handle.

Goal of detecting hotspots. Our ultimate goal is to find the ser-
vices, which if optimized, will impact the functionality the most.
This goal doesn’t always translate to finding the services that form
the bottleneck. For example, there may not be any benefit in opti-
mizing a service that has the maximum response time especially if
its caller is waiting for a different service to be completed.

This work takes all these challenges into consideration to detect
hotspots in service oriented architectures.

4. PRELIMINARIES

The LinkedIn website is composed of many user-facing function-
alities. Examples of these include search, a news feed, a profile, and
so on. Whenever the user requests a functionality F', multiple ser-
vices call each other to serve the incoming request. The first service
initiating the request is part of the front-end tier. The service that
initiates a call is the caller, and the service it calls is the callee. The
dependencies between the caller and the callee services in a given
request can be modeled as a directed acyclic graph with a node for
each service. We call it a Service Call Graph or SCG. We also refer
to each request to F as an instance of F. The set of services called
for serving F can vary across different instances because of various
factors including caching, errors and so on. The hotspot detection
algorithm has to account for the fact that SCG for a functionality
doesn’t have a unique representation. For each service call in an
SCG various useful metrics are collected. These metrics help us
find hotspot services with respect to different objectives.

For an instance of functionality F', the SCG G is denoted by a
3-tuple G = (V,E,M), V € N is the set of unique service identi-
fiers, E C V x V is the set of service-service calls, and M : E — R
computes the metric associated with each service call. For every
(u,v) € E, v is a subcall of u, and u is the parent of v, denoted by
p(v) = u. Since each node has a unique parent, the metric on edge
(u,v) is considered a property of v.

In every SCG, the node without a parent is denoted by root and it
usually corresponds to a service in the front-end tier. The degree of
a service u, d(u), is the total number of subcalls from u. Also, the

trace of a service, 1r(u), is the sequence nodes on the path from root
to u i.e., tr(u) =< ug = root, ... ,u, = u > such that p(u;11) = u;.

Figure 2 shows an example SCG with the latency metric. For
each node, the unique identifier, service name, and the start and end
times of the service-service call is shown. The latency of an edge
is the difference between the start and end times of the associated
service call. In the example, M((2,4)) = 12 -7, p(4) = 2, and
d(2) = 5. Notice that the nodes 4,5, 6, and 7 are different instances
of the same service.

Abstract Problem Statement: Given SCG instances G; =
(Vi,Ei,M), of a functionality F over a time period and a small
positive integer ¢. Find a hotspot services for F with respect to
the metric M.

5. OUR APPROACH

In this section, we describe the various steps in our framework.
For each step, we explain the rationale behind using a specific
approach. The following shows three major steps in our hotspot
detection framework.

Steps in hotspot detection framework

1. If necessary, compute a derived metric for each service
call.

2. Find top-k hotspot services in every SCG instance.

3. Return frequently occurring hotspot services as ¢ ser-
vices to optimize.

5.1 Top-k hotspots in each SCG instance

In a broad sense, there are two ways to detect & hotspot services
in service-oriented architecture. First, we find/construct a few sum-
mary G;’s representing the general trend of the service call metric
across all SCG instances. The summary G;’s are then analyzed for
computing o hotspot services. Second, we compute k (for a small
positive integer k) services that form a hotspot in a given instance
of G;. We call this the top-k list for the SCG G;. The top-k lists are
further analyzed to compute o hotspot services.

We follow the second approach as it presents the following three
advantages compared to the other approach.

Summarizing SCG. A problem similar to that of computing
summary SCG occurs in the field of Bioinformatics in the form
of constructing a consensus tree from a set of phylogenetic trees.
A phylogenetic tree gives the evolutionary relationship between a
set of species. By using different construction algorithms, different
trees are obtained for the same set of species, and the consensus tree
is a single tree that includes features from all the trees.

In our case, SCG plays the role of a phylogenetic tree and the
services play the role of species. The summary tree which we are
interested in is a consensus tree of the input SCG instances. How-
ever, there are two major differences between a phylogenetic tree
and an SCG. First, in a phylogenetic tree, the species lie only at
the leaf level, whereas in an SCG even the internal nodes represent
a service. Second, edges in a phylogenetic tree usually don’t carry
any weights. In SCG, edges are always associated with a service
call metric.

Additionally, most of the consensus tree construction methods
start by computing the bipartitions of the phylogenetic trees [2, 23].
The consensus tree is then constructed from the bipartitions that are
present in all the input trees. However, the number of bipartitions is
significantly more in the case of SCG, because the bipartitions are
subgraphs rather than a set. Also, comparing bipartitions requires
solving graph isomorphism, a computationally intensive problem.



SCG V1 %)
G X1 | X
Gy | x1 | x2
G3 X3 X2
Gy X3 | x4
Gs X3 X5

Table 1. Example showing top-k lists for various service call graph
instances. The columns vy and v, denote the service names of top
2 services obtained by solving Equation 1 corresponding to SCGs
Gy,...,Gs.

Hence, constructing the summary SCG is both memory and com-
putation intensive, especially, when the number of requests are in
the order of millions per day.

Loss of information. Even if we had enough computation and
memory resources to compute and compare the bipartitions, an-
other challenge is to merge the bipartitions that have different met-
ric values on the edges. There is an inherent loss of information
if any summary statistics such as mean, median and so on of the
metric values are used.

Online and offline algorithm. Our approach has an added ben-
efit that it can be easily made into an online algorithm because
hotspots are computed on a per instance basis. In the alternate ap-
proach, the summary SCG construction step cannot proceed until
all the SCGs are collected.

Objective function. In summary, the goal of computing top-k
hotspots is equivalent to solving the following objective function
for each SCG instance.

max 7(S)

. )]
subjectto  |S| <k, SCV

The function f is constructed to reflect the changes in the value
of the metric under consideration as the services in S are optimized.
The set V consists of all the services in the specific SCG instance.

5.2 Frequent top-k hotspot services

We motivate the need for this step with an example. Table 1
shows top-k (k=2) hotspots in five SCG instances of a functionality
F. Based on the frequency of occurrence in top-k lists, the services
{x2,x3} are the best candidates to optimize F. However, optimizing
these services together might not have a huge impact on requests to
F in general, because they co-occur only once in the five top-k lists.
A better choice would be to optimize {x;,x; }, which occurs twice.
Frequent itemset mining solves this exact problem. Therefore, the
target services to optimize are the frequent sets of services in the
top-k hotspot lists computed for SCG instances.

6. OPTIMIZING LATENCY

The objective of analyzing the SCGs of a functionality F' with
respect to the latency metric is to find « services, which if opti-
mized, produce the greatest reduction in response time of requests
to F. These services are the hotspot services for F. Following our
three step approach, the first step is trivial. With the second step,
we compute the top-k hotspots in each SCG.

We first define an appropriate objective function f (Equation 1)
and then devise an algorithm to solve it efficiently. A scalable
and efficient algorithm is required because the number of SCG
instances are in the order of millions.

Key Idea: Assume each service in a SCG; can be run 6(> 1)
times faster. We answer the following question: What are the k
services, if already optimized, that would have led to maximum

reduction in response time of root in SCG; ? We are not interested
in their effect on other SCG instances.

6.1 Effect of optimizing one service

First, we model the effects of optimizing a service.

Definitions: For any service v, the start time and end time is
denoted by s, and e, respectively, (¢, > s,). The interval [s,,e,] is
its active interval. The response time equals the length of active
interval, defined by the difference e, —s,. At any given instance
during the active interval [s,e,], the service v is in one of the two
states: either waiting for a subcall to return or performing internal
computations.

An interval [r],1;] is a waiting interval of v if and only if the
active interval of any its subcall is either completely disjoint or
entirely contained within [t1,7,]. In other words, it is one of the
maximal intervals during which v is waiting on a subcall. On the
other hand, a computing interval is a maximal subinterval such that
no subcall of v is active at any instant. These definitions imply that
the computing and waiting (from now on referred to as CW) inter-
vals are both disjoint and also that their union is the active interval.

Consider the SCG in the Figure 2. The start time of the service
2 is 5o = 0 and its end time is ey = 79. The response time of the
service 4, r(4) = 12 —7 = 5. The CW intervals of 2 are {[0, 5],[6,
71,112, 191,[77, 791} and {[5, 61,[7, 12],[19, 771}, respectively.
Note that a computing interval is always followed by a (possibly
empty) waiting interval.

6.1.1 Local effect of optimization

To begin with, we compute the effect of optimizing v on its own
response time. Methods such as those proposed in Mann et al. [16]
estimate this effect by precomputing a model based on the trace
history [22]. But the question that we are trying to address here
is what-if the service was optimized in a specific SCG instance,
irrespective of the metrics in other SCGs. It is important to under-
stand this distinction. We estimate the impact by dividing its active
interval into blocks of CW interval pairs.

Let v be a service and vy,vs,... V() be its subcalls. Without
loss of generality, assume that the number of CW pairs is m and
that the lengths of CW intervals (sorted based on start time) in the
i pair are ¢; and wy, respectively. Based on the definition of CW
intervals, the response time of v is written as :

r(v) = . (ci+wi) )

Figure 3 shows the active intervals of v and its 6 subcalls,
vy through vg. The CW interval pairs of v are ([0,1],[L,8]),
([8,9],19,10]), ([10,12],[12,15]) and ([15,16],[16,16]). In general,
given the start and end times of the subcalls of a service, the CW
pairs can be computed incrementally using a trivial linear time
algorithm starting with the subcall that starts the earliest.

To quantify the local effect, assume that v is optimized by a fac-
tor (6 > 1). We call 0 the improvement factor. This optimization
leads to smaller computation intervals because, theoretically, all the
internal operations are performed 6 times faster. In other words,
an internal operation that takes a unit time before the optimization,
now runs in ! units of time. Therefore, the computation time of v
is reduced by (1—07") x YI=" ¢; and the active interval of a subcall

vj in the " CW pair is shifted by (1—6~1) x leiiil ¢k The modi-
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In Figure 3, the dotted lines shows the active intervals after
optimizing the service v by 6 = 2.

6.1.2 Global effect of optimization

Optimizing a service v reduces its response time, r(v). This ef-
fect propagates to its parent, and recursively all the way to the root
along the trace, rr(v). It is also possible that the active intervals
of other services are shifted. We call this the global effect of opti-
mization. However, sometimes the impact is not propagated to the
parent. For instance, in Figure 3, optimizing the service vg has no
impact on the response time of its parent, v, because the service
vs is one of the bottlenecks for v. Now, we formalize the notion of
global effect using the following assumption.

ASSUMPTION 1. Let v be a service and vy,vy,.
subcalls. Let e, and €, be the end times of the subcall Vi before and
after optimization. The effect propagates to v (statement p), if and
only if Av; such that active interval (after optimization) of v; over-
laps with that of v; (before optimization) (statement q) i.e., p < q.

()be its

REASONING 1. p — q. We will reason about the contraposi-
tive i.e., =g — —p. Suppose, such a service v; exists. As the active
intervals overlap, one of the following two conditions hold true.

L e, < ey; < ey, Or e, < sv; < ey, In either case, if ey, is reduced to
ef,i, the relative order of the subcalls v; and v; changes from v’s
perspective i.e., v; ends later than v;. Because, our method is ag-
nostic to how the service-service calls are made, we don’t allow
effects to be propagated if it changes the relationship between
subcalls. So, the effect is not propagated to the parent, v.

2. [ey,,ey,] € [sy;,ey,]. In this case, the effect is not propagated
because the subcall v; forms a bottleneck.

q — p. In this case, shifting the active intervals of all subcalls
by e,, — ¢, retains the order of other subcalls. This is because the
active interval of v; doesn’t overlap with that of any v;. Hence, the
effect can be propagated to v if no subcall except v; is active during
the interval [e;,,e,,]. [J

In summary, Assumption 1 restricts the impact propagation to
the cases where the order of the subcalls is maintained for all the
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(a). Example SCG (b). Timeline of a service 2

Figure 4. Example showing global effect of optimization. The
service 2 is optimized by 6 = 2.

services. It is required because we want the algorithm to be agnos-
tic to the underlying dependencies between the subcalls and their
parent service.

6.1.3 Active intervals after optimization

We now combine the local effects (Section 6.1.1) and global
effects (Section 6.1.2) to compute the effect of optimizing a service
on the root service. We define the impact on root as follows.

(1-071)xYi="¢; if Assump. 1 true
impact(v) = Vu € tr(v) “)
0 otherwise

m is the number of CW pairs and 0 is the optimization factor. It
can be seen from Equation 4 that the impact is propagated only if
Assumption 1 holds true for all the services on the path from v to
root in the SCG. The active intervals of the services are updated
as follows: If the service is a descendant of v;, and v; belongs
to the /" CW interval of v, then its active interval is shifted by
(1—671) x ¥:~{ c;. Otherwise, the active intervals of all services
that start later than s, are shifted by impact (v).

Figure 4 shows an example of a SCG instance. For each service,
the active intervals before and after optimizing the service 2 by 6 =
2 are shown. The timeline and CW intervals of 2 are shown in the
Figure 4a. Notice that the computation time (dashed boxes) of the
service 2 is 1.6. Therefore, the response time of the root is reduced
by 0.8. But, the response times of 5 and 7 are reduced by 0.5 be-
cause they descend from a subcall in the first CW interval pair of 2.

6.2 Top-k services in one call graph

In this section, we derive an objective function for the latency
metric, and present an algorithm to compute the optimal subset



of services. We assume each service can be optimized by 6, and
compute the top-k hotspots in a SCG. The algorithm can be eas-
ily extended to cases where the optimization factor 6 differs for
different services.

LEMMA 1. Let x and y be two services that have a non-zero
impact on the root. The total impact after optimizing x and y is the
same irrespective of the order in which the services are optimized.

Proof Sketch:

The interesting case is when x is a descendant of y in the SCG
or vice versa. Without loss of generality, let y be a descendant of
x. Then [sy,ey] € [sx,e]. Irrespective of the order in which the
services are optimized, the end times of the services x and y are
(ex — impact(x) — impact(y)) and (e, — impact(x) — impact(y)),
respectively. The lemma is easy to prove in other cases. [

We can also see that the effects are additive. For a subset S of ser-
vices, the total impact of optimizing all the services in S is just the
sum of individual impacts (computed as in Equation 4). Therefore,
the objective function f(S) can be defined as:

S) = Z impact(v) ®)

ves

THEOREM 1. Computing S, |S| = k, that maximizes f(S) is
NP-Hard.

Proof Sketch: We prove this using a reduction from the follow-
ing variant of the subset sum problem, which is an NP-hard prob-
lem [15].

Subset sum: Let x1,...,x, be positive integers, M be the maximum

bound, and k be the maximum size of the subset. Find a subset

S, |S| < k, that maximizes Y,,csXi,Yr,esxi < M. The problem is

equivalent to computing top-k hotspots for the SCG shown in the

Figure 5.

The variable ¢ depends on 6 as : f = 8 x (8 — 1)~ L. It is chosen
such that a computation that takes ¢ units before optimization will
be a unit faster after the optimization. € is a small positive constant.
We make the following observations from the SCG construction.

e A and B have 0 impact because of Assumption 1.

e Each of the i nodes, 1 <i < n, has a computation time of x; x t,
and optimizing it by 6 reduces the response time of root by x;.
Therefore, optimizing node i has the same effect as picking x; in
the subset.

o i’ nodes make sure that each i node is picked at most once.
Moreover, the maximum possible reduction in the response time

of root, without violating Assumption 1, is M. Therefore, if there
exists a polynomial time algortihm for maximizing the objective
function f then it can be used to solve the subset problem in poly-
nomial time. Now, the equivalence between the two problems can
be established easily. [

We now relax Assumption 1 so that computing optimal S be-
comes tractable.

ASSUMPTION 2. Let v be a service and vy,va,...
subcalls. Let ey, and ¢, be the end times of v;. Further, I* = [e}, , e,,]
be the maximum subinterval of [e(,i7evi] such that Avj, v; is active
during I*. By optimizing v;, the response time of v is reduced by

*
ey, —e.

»Va(v) be its

i

REASONING 2. The assumption can be thought of as a frac-
tional version of the Assumption 1. Instead of restricting the impact
on v to be either 0 or e, — e, , this allows for a partial effect e,, —e;;,
and has the property that the relative order of the services remains
intact. It can be proved using the same arguments as in Assumption
1. O

\' root \
(X+M) * t

X*t M-€

Figure 5. SCG for which computing the optimal k£ subset is
NP-Hard

Computing optimal subset S. With Assumption 2, the subset §
that maximizes Equation 5 can be computed using a greedy itera-
tive approach. In each iteration, pick the service that has the maxi-
mum impact on the root service and modify the active intervals as
described in Section 6.1.3. The services picked in this process are
the top-k hotspots. This procedure returns the optimal set because
Assumption 2 reduces the subset problem to its fractional version,
which has an optimal greedy algorithm.

6.3 Frequent subsets of services

The last step in our hotspot detection framework is computing
frequent service(s) from the top-k hotspot lists of each SCG.

We used a frequent pattern mining approach to find & services
to optimize to produce the greatest reduction on the latency of F'.
Frequent itemset mining is one of the fundamental data mining
tasks and has been widely studied in the literature. Its main goal
is to find an item or set of items that occur frequently in a list of
transactions. We direct the reader to Goethals [9] and Han et al.
[11] for an overview of frequent pattern mining methods.

Let I be a set of items. A transaction is just a subset of /. Given
a list of n transactions T,73,...,T, , the support of a set S is the
fraction of transactions that are a super set of S i.e., support(S) =
|{T,\5;l7§7}}\ We say S is frequent <= support(S) > minsup for
some user given threshold minsup. S is also called a maximal set if
AS such that S’ is frequent and S’ O S. The algorithm by Borgelt [3]
returns all maximal sets from a given database of transactions and
minsup. In our case, each top-k list becomes a transaction and / is
the set of all services. The maximal sets of services are the hotspots
for F.

6.3.1 Ranking

We present three different schemes to rank maximal sets F.

Frequency Ranking. Maximal sets are ranked by their support.

Impact Ranking. Frequency based ranking ignores the impact
of the services in the maximal set. The average impact, f(S), of a
maximal set S can be defined as follows:

£(8,Gy)
=Y s

cT
support(S

where the impact(S,G;) in G;j is computed using the Equation 5,
and 7; is the top-k list for Gj. In this ranking scheme, the maximal
sets are ranked by their average impact.

Coverage based Ranking. We say a maximal set covers all SCG
instances in which it is a subset of the top-k list. In this ranking
scheme, we try to maximize the number of top-k lists covered using
a minimum number of maximal sets. This is similar to solving set
cover problem [15] where each top-k list is an element that has to
be covered. Computing the minimum set cover is an NP-complete
problem and has no polynomial time algorithm unless P = NP. How-



ever, there is a greedy O(logn) approximation algorithm [6]. In our
experiments, we used impact ranking.

7. OPTIMIZING COST TO SERVE

At LinkedIn, and many other web properties of sufficient scale,
data is both stored and processed in a distributed fashion. Each ser-
vice can call the same services on multiple machines. Informally,
the number of such calls is called its multiplicity. For example, a
service handling a user search request may scatter service calls to
several machines to gather and then merge the relevant data. With-
out loss of generality, we assume that the number of machines used
by a service is a proxy for the cost that it contributes to a request.
Therefore, the hotspot services with respect to cost fo serve metric
are the services that use maximum number of machines. Though it
seems like a straightforward counting problem, the main challenge
lies in the construction of SCG with an appropriate metric for each
service-service call.

We briefly describe how our framework finds services that reduce
the cost of serving a request.

7.1 Computing multiplicity metric
To construct the SCG with the multiplicity metric, we first need
a way to group equivalent subcalls made by a service.

DEFINITION 1. Let u be a service, and vy, vy be any two sub-
calls. The services vy, vo are equivalent, denoted by vi = v, <=
vi = v, and 3 a bijective function f : X = subcalls(vi) — Y =
subcalls(vy), Vx € X, x = f(x).

In other words, a pair of services are equivalent if and only if all
the downstream paths originating from them are isomorphic. For
example, in the SCG shown in Figure 6 the roor node service A
calls two instances of service B with node ids 2,4. Each of these
services calls other services identically. Therefore, the nodes are
equivalent i.e., B = B4. We can group the subcalls of a service
into a set of equivalence classes such that all pairs of services in a
class are equivalent. Let E be an equivalent class of subcalls from
a service u. Then, the |E| equivalent services can be replaced by a
service v with multiplicity metric as M ((u,v)) = |E|. As in the case
of latency, we consider it a property of the subcall service v.

The metric M(v) gives us the multiplicity v for each instance
of its parent p(v) = u. Similarly, M(u) is the multiplicity in terms
of its parent p(u). Therefore, the cost contributed by a service v,
impact (v), is:

mul(v) = H M(u) (6)

uetr(v)

To compute the multiplicity metric, the nodes are processed in level
order, and equivalence classes of subcalls are computed. All the ser-
vices in an equivalent class are replaced by a single service with
the metric value equal to the size of the equivalent class. The multi-
plicity of root, and services x with d(x) = 0 being 1. Figures 6a and
6b show an example of an SCG without metric and with the metric
M. In the first level, the equivalence classes of subcalls {2,3,4}
are {2,3} and {4}. Therefore, subtree rooted at 4 is deleted and
M(2) = 2. Similarly, in the third iteration the node 12 is deleted
and M(11) = 2. The number of machines used by the service E
with p(E) = C equals the product 1 X2 x 1 x2=4.

7.2 Detecting hotspots

Given that we have the SCG with the multiplicity metric, we can
use our hotspot detection framework to find services that use the
most machines for a given functionality F' in the system. Comput-
ing the top-k list is trivial, as it is just the first k services sorted in the
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(b). SCG with multiplicity metric

Figure 6. Example showing the construction of service call graph
with number of machines as the metric.

decreasing order mul(v) computed using the Equation 6. From the
top-k lists of each SCG, we compute and rank the ¢ services using
the frequent itemset mining approach as described in Section 6.3.

8. OPTIMIZING ARBITRARY METRICS

To summarize our discussion, we now show how our frame-
work can be extended to detect hotspots with arbitrary metrics
and objective functions. The first step is to log or compute the
appropriate metric for each node in the SCG. The next step is to
devise an objective function f that reflects the goal, and solve the
optimization problem in Equation 1. In the case of latency f(S) =
Y.esimpact(v), and for multiplicity f(S) = LyesTluerr) M (V).
Additional constraints such as Assumptions 1 or 2 may be en-
forced on the feasible solutions. The optimal set S is the top-k list
in a given SCG instance. Once the top-k lists are computed for all
SCG instances, any frequent mining algorithm can be used to mine
the o hotspot services. Additionally, various ranking schemes as
described in Section 6.3.1 can be used to rank these hotspots.

9. EXPERIMENTS

We performed several experiments to show the effectiveness of
our hotspot detection framework. We show the results for latency
because it is one of the most important metrics to optimize.

A practical problem arises in testing whether the projected im-
provements in the metrics are correct because the projections are
based on the assumption that the underlying services can be op-
timized. Therefore, we used indirect methods to show that the
hotspot services predicted are true hotspot services in the LinkedIn
website. Due to the lack of space, we focus our experiments on two
of the most requested functionalities on LinkedIn denoted by Fj
and Fp.

The hotspot detection system consists of three components.

Batch Processing. The algorithm is run periodically to construct
SCG from the service calls, mine top-k services in each SCG, and
finally compute the & services for all the functionalities in the sys-
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Figure 7. Example data from web application UL

Functionality IFI |E| | d(v) | Max d(u)
Home 102M | 16.90 | 1.88 9.02
Mailbox 333M | 2331 | 1.9 8.88
Profile 3.14M | 17.31 | 1.86 11.04
Feed 1.75M | 16.29 | 1.87 8.97

Table 2. Number of incoming requests (in millions), number of
service calls, average degree of non-leaf services, and maximum
degree of a non-leaf service for various functionalities. The
numbers are scaled by a constant and averaged over a day.

tem. The computed results are stored in a distributed key-value
store keyed by the functionality F' and date.

Online. We also developed an online version of the system to
detect hotspots in real time. In this, the stream processing engine
computes the top-k in each SCG after all the service calls return to
their caller.

Web Application. as a web application. The tool is useful for
all the developers to target the services to optimize. A user of the
system has the option of choosing the functionality F' and the time
frame to analyze. The application retrieves a ranked list of hotspots
for F' along with potential improvement if the services were opti-
mized.

Figure 7 is an example of how the results are presented to the
user. The table shows the possible reduction in the response time of
root by optimizing hotspots with different improvement factors (in
percentages). The services are shown in the order of their impact
ranking as defined in the Section 6.3.1.

The preprocessing scripts and the SCG construction steps run
on a Hadoop cluster. We have developed a Java-based library for
processing SCG with respect to a user-preferred metric. Mining of
frequent services from the top-k lists is relatively easy in terms of
the computational complexity and is performed on a single node.
The value of minimum support, minsup, we used is equal to 25%
of the number of SCG instances.

9.1 Statistics

Table 2 shows the the number of incoming requests we are min-
ing. All the numbers shown are scaled down by a constant factor
(>1). It shows the average number of requests, number of service
calls, average degree of non-leaf services that is services v such that
d(v) > 0, and the maximum degree of non-leaf services for some
of the most commonly requested system functionalities. One of the
most requested functionalities Home is requested on an average of
10.2 million times per day. There are about 17 inter-service calls in
a request to Home.

Fraction of unique instances | Number of services
(0.88, 1.0] 40
(0.76, 0.88] 6
(0.64, 0.76] 2
(0.53, 0.64] 1
(0, 0.53] 1

Table 3. Fraction of unique SCG instances for 50 most requested
functionalities in the system.

APIL Maximum parallel calls
Get connections 17
Edit profile 12
Updates 12

Table 4. Maximum number of active parallel calls during typical
API requests.

One of the main challenges in mining SCGs is handling the
changes in the structure of the call graphs called for serving the
same functionality. This is not just an exception, but the norm in
typical service-oriented architectures. We computed the fraction
of unique SCGs for 50 most requested services . Table 3 shows
the number of functionalities in various intervals. For example, in
40 out of the 50 functionalities, at least 88% of the SCG instances
are structurally unique. Note that the uniqueness is computed only
based on structure—response times are not considered. Inode t
can be seen most the SCG instances are unique, reinforcing the
complexity of the mining hotspots problem.

As shown in Section 6, overlapping subcalls pose a serious chal-
lenge in computing the top-k hotspots. It is especially observed
for the latency metric. Table 4 shows the maximum number of
overlapping subcalls for some downstream service in various func-
tionalities.

9.2 Comparison against baseline approach

We show the effectiveness of our greedy top-k service compu-
tation to a baseline approach. One way of selecting top-k services
in a SCG is to select the first k services sorted based on the metric
under consideration. In other words, the top-k services are the k
services that have the maximum response time or use the maxi-
mum number of machines when the goal is reduce to latency or
number of machines used, respectively. Figure 8 shows the frac-
tional improvement in the response time of F4 and Fp instances by
optimizing the top-k services returned by our greedy approach and
the baseline algorithm. The improvement factor 6 = 2 and k = 3.
The maximum improvement possible is (1 —8~!) = 0.5. It can be
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Figure 8. The improvement in latency if the top-k services are
computed using our greedy approach and baseline algorithm for
F4 and Fp. In both cases, the vertical axis shows the fractional
reduction in the latency of root if top-k services are optimized by 2.

seen that optimizing the services returned by our algorithm has a
greater impact in reducing the response time of F4 and Fp. On an
average, the impact of top-k services computed using our approach
has twice the impact than those computed using the baseline. We
consistently obtained an improvement of nearly 0.3 compared to
the maximum of 0.5 by optimizing only k = 3 services.

9.3 Impact of 6 and ranking services

One of the challenges in applying our framework is deciding
on an appropriate improvement factor 6 for computing the top-k
services in SCG instance. Also, the improvement factors are not
always achievable in practice. For example, it is extremely difficult
to reduce the latency by 6 = 2 for many services, especially where
the limitations are due to underlying hardware constraints. How-
ever, we found in our experiments that the hotspot services detected
are usually the same irrespective of the 6 value used.

Let 6% = {6),0,,...,0,}, be a set of optimization factors and
H; be the set of top-k hotspots using 6; as the optimization factor.
For any h € |JH;, we define its consistency as follows:

_ {#Hi|h € Hi} |
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Figure 9. Consistency of the « services for different values of 6
for Fj and Fp. For Fp, the o (hotspot) services are exactly the same
for all values of 6.

We can see that the higher the value of consistency, the lesser is
the effect of improvement factor. Figure 9 shows the consistency
of the hotspot services for F4 and Fg. On the horizontal axis are
the hotspot services and the vertical axis shows their consistency
values. We used 7 different 6 values in the interval (1,2]. A consis-
tency value of 1 indicates that the hotspot services returned by our
algorithm are the same for all 7 different values of 6. We can come
to a similar conclusion by observing the projected improvement
values for various values of 6; in Figure 7.

9.4 Consistency over a time period

The offline version of the algorithm runs every day computing
the a (hotspot) services to optimize for each F in the system. The
output returned by the hotspot detection framework is meaningful
if it returns similar results over a period of time. This gives us
additional confidence that the hotspot services are indeed the best
services to optimize. We analyzed the results of our algorithm over
a period of 12 days. The hotspot services computed each day were
not only similar but also have a similar impact on the F if they were
optimized. For example, Figures 10a and 10b show the fractional
improvement in the response time of requests to F4 and Fp. The
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Figure 10. Fractional reduction in latencies of F4, Fp over a period
of 12 days. The hotspot services shown in the legend are not only
consistent but also have similar average impact on the latency of
root.

improvement factor 6 = 2. The improvement on a given day is
averaged across all SCG instances.

10. CONCLUSION

In this paper, we addressed the problem of finding hotspots in a
service-oriented architecture. This problem is challenging due to
the service call graph’s non-uniform and dynamic nature.

Our approach is to find hotspots in a specific request and then
use a frequent pattern mining approach to compute and rank these
hotspot services. This method can be used to detect hotspots in
terms of latency, cost to serve, or any other metric. Our approach
is scalable and can run both online or offline. We evaluate our algo-
rithm on production data from LinkedIn, which shows significant
improvement over baseline models.
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